Número:

Nome:

Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Formulário
Axiomática: P1. $P(A) \ge 0$ P2. $P(\Omega) = 1$ P3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$
$Var(X) = E(X - \mu)^{2} = E(X^{2}) - \mu^{2}; Cov(X, Y) = E\{(X - \mu_{X})(Y - \mu_{Y})\} = E(XY) - E(X)E(Y); \rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_{X}\sigma_{Y}}$
$E(aX + bY) = aE(X) + bE(Y)$; $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab Cov(X, Y)$; $E(Y) = E_X [E(Y X)]$;
Função geradora de momentos: $M_X(s) = E(e^{sX})$; $E(X^r) = M_X^{(r)}(0)$
$X \sim Po(\lambda) \Rightarrow f(x) = \left(e^{-\lambda}\lambda^x\right)/x ! (\lambda > 0, x = 0, 1, \cdots); X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x}\theta^x(1-\theta)^{n-x}(n > 1, x = 0, 1, \cdots, n)$
$X \sim N(0,1) \Rightarrow X^2 \sim \chi_1^2; \overline{X} = \frac{\sum_{i=1}^n X_i}{n} \; ; \; S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n} = \frac{\sum_{i=1}^n X_i^2}{n} - \overline{X}^2 \; ; (n-1)S^2 = n \; S^2$
$X \sim \chi^2_{(n)}$ então $E(X) = n$; $Var(X) = 2n$; $M_X(s) = (1 - 2s)^{-n/2}$, $s < \frac{1}{2}$; $(nS^2)/\sigma^2 \sim \chi^2_{(n-1)}$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale -2,5. A classificação desta questão variará entre um mínimo de zero e um máximo de 10].

1. Considere uma partição $\{A_1,A_2,A_3\}$ do espaço de resultados Ω e sejam B e C acontecimentos de Ω com probabilidade positiva. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	V	F
Os acontecimentos $A_i \ (i=1,2,3)$ são independentes.		
$U_{i=1}^3 A_i = \Omega \ \mathbf{e} \ A_i \cap A_j = \phi \ (i \neq j).$		
$P(B \cap C) = P(B \cap C A_1) \times P(A_1) + P(B \cap C A_2) \times P(A_2) + P(B \cap C A_3) \times P(A_3).$		
Admita que B e C são acontecimentos incompatíveis. Então $P(B-C)=P(B)$.		

2. Seja X uma variável aleatória contínua com função de distribuição F(x). Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	<u> </u>	<u> </u>
Sejam $a < b < c$ números reais e $P(X > c) > 0$. Tem-se $P(X > a X > c) = P(X > b X > c)$.		
Sejam X uma variável aleatória contínua e $G(y)$ a função distribuição de $Y = X/2$.		
Então $G(y) = 1 - F(2y)$		
$\forall x \in \mathbb{R}, F(x+0) - F(x) = 0$ seja X contínua, discreta ou mista.		
Se X é uma variável mista e a um ponto de continuidade de $F(x)$, então $P(X \le a) > P(X < a)$		

3. Seja f(x,y) a função densidade conjunta de uma variável aleatória bidimensional (X,Y). Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	<u> </u>	<u> </u>
Suponha que a distribuição de uma variável aleatória contínua X é assimétrica positiva e seja μ_e a respectiva mediana. Então $P(X>\mu_e)<0.5$.		
Se X é uma variável aleatória com $E(X) = \mu$; $Var(X) = \sigma^2$ e $Y = (3X - 2)/\sigma$, então $Var(Y) = 9$.		
Se $cov(X,Y) \neq 0$ então X e Y não são independentes,		
$P(Y \le a) = \int_{-\infty}^{a} \int_{-\infty}^{+\infty} f(x, y) dx dy$		

\	/	F	
Se $X \sim B(n, \theta) \Rightarrow Y = n - X \sim B(n - x, \theta)$.			
Se $X \sim N(\mu, \sigma^2) \Rightarrow Y = -X \sim N(-\mu, \sigma^2)$.			
X é uma variável contínua com $F(x)$ estritamente crescente. Seja $Y=F(X)$. Qualquer que seja a distribuição de X, $Y \sim U(0,1)$.			
Considere um processo de Poisson com taxa média λ por minuto. Então o tempo médio, em minutos, de espera por uma ocorrência nesse processo é $1/\lambda$.			

5. Seja (X_1, X_2, \dots, X_n) , n > 2, uma amostra casual simples retirada de uma população X com média e variância desconhecidas. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

V	<u> </u>	
O valor esperado da variância corrigida da amostra coincide com a variância da população.		
$(X_{(n)}-X_{(1)})/\sigma$ é uma estatística.		
$Cov(X_i, X_j) \neq 0 \ (i \neq j)$		
$P(X_i \le x) = F(x) \ (i = 1, 2, \cdots, n)$		

6. Mostre que numa distribuição de Poisson de parâmetro λ inteiro $P(X = \lambda) = P(X = \lambda - 1)$.

[Cotação: 15]

7. Sejam os acontecimentos A, B, $C \subset \Omega$ com probabilidades não nulas e mutuamente independentes. Justifique a igualdade: $P(A - B|C) = P(A)P(\bar{B})$. [cotação: 15]

Número:_

Nome:

Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Formulário
Axiomática: P1. $P(A) \ge 0$ P2. $P(\Omega) = 1$ P3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$
$Var(X) = E(X - \mu)^{2} = E(X^{2}) - \mu^{2}; Cov(X, Y) = E\{(X - \mu_{X})(Y - \mu_{Y})\} = E(XY) - E(X)E(Y); \rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_{X}\sigma_{Y}}$
$E(aX + bY) = aE(X) + bE(Y)$; $Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$; $E(Y) = E_{X}[E(Y \mid X)]$;
Função geradora de momentos: $M_X(s) = E(e^{sX})$; $E(X^r) = M_X^{(r)}(0)$
$X \sim Po(\lambda) \Rightarrow f(x) = \left(e^{-\lambda}\lambda^{x}\right)/x ! (\lambda > 0, x = 0, 1, \cdots); X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x}\theta^{x}(1-\theta)^{n-x}(n > 1, x = 0, 1, \cdots, n)$
$X \sim N(0,1) \Rightarrow X^2 \sim \chi_1^2; \overline{X} = \frac{\sum_{i=1}^n X_i}{n} \; ; \; S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n} = \frac{\sum_{i=1}^n X_i^2}{n} - \overline{X}^2 \; ; (n-1)S'^2 = n \; S^2$
$X \sim \chi^2_{(n)}$ então $E(X) = n$; $Var(X) = 2n$; $M_X(s) = (1 - 2s)^{-n/2}$, $s < \frac{1}{2}$; $(nS^2)/\sigma^2 \sim \chi^2_{(n-1)}$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale –2,5. A classificação desta questão variará entre um mínimo de zero e um máximo de 10]

1. Considere uma partição $\{A_1,A_2,A_3\}$ do espaço de resultados Ω e sejam B e C acontecimentos de Ω com probabilidade positiva. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	V	F
Os acontecimentos $A_i \ (i=1,2,3)$ são incompatíveis		
Os acontecimenentos $ar{A}_1, ar{A}_2, ar{A}_3$ são mutuamente independentes		
Nestas condições tem-se sempre $P(B-C) \ge P(B)$		
Se $B \subset A_2 \Rightarrow P(B) = P(B A_2)P(A_2)$		

2. Seja X uma variável aleatória com função de distribuição F(x). Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	 <u> </u>
Sejam $a, b, c \in \mathbb{R}, a < b < c \ e \ P(X < b) > 0$. Então $P(X < c X < b) > P(X < a X < b)$.	
Sejam X uma variável aleatória contínua e $G(y)$ a função distribuição de $Y = 1 - X$. Então $G(y) = 1 - F(1-y)$.	
$\forall x \in \mathbb{R}, F(x-0) - F(x) = 0$ se X é uma variável aleatória contínua.	
Se X é uma variável aleatória mista, então existe pelo menos um ponto de descontinuidade de $F(x)$.	

3. Indique as respostas verdadeiras (V) ou falsas (F), assinalando com X na quadrícula respectiva:

	V	F
Suponha que a distribuição de uma variável aleatória contínua X é assimétrica negativa e seja μ_e a respectiva mediana. Então $P(X<\mu_e)<0.5$.		
Seja (X,Y) uma variável aleatória bidimensional. Se $Cov(X,Y)=0$, X e Y podem não ser independentes		
Se X é uma variável aleatória com $E(X) = \mu$; $Var(X) = \sigma^2$ e $Y = (X - \mu^2)/\sigma^2$, então $Var(Y) = 1/Var(X)$.		
Se $M(s)$ é uma função geradora de momentos, então $M(0)=1$		

	F	
Se $X \sim B(n, \theta) \Rightarrow Y = n - X \sim B(n - x; 1 - \theta)$.		
Seja $X \sim N(\mu, \sigma^2)$ então $Y = F(X) \sim U(0,1)$		
Considere um processo de Poisson com taxa média λ por unidade de tempo. Seja Y a variável aleatória que representa o tempo de espera pela primeira ocorrência. Então $E(Y)=1/\lambda$.		
Se X_i $(i=1;\cdots,n)$ são variáveis aleatórias independentes com distribuição normal standardizada, então $\sum_{i=1}^n X_i^2 \sim \chi^2_{(n)}$		

5. Seja (X_1, X_2, \dots, X_n) , n > 2, uma amostra casual simples retirada de um universo X com média e variância desconhecidas. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

V	F	
$P(X_1 < x, X_2 < x, \dots, X_n < x) = [F(x)]^n$		
$(\sum_{i=1}^n X_i - n\mu)/(\sigma\sqrt{n})$ é uma estatística		
Se existe $Var(X)$ então $Var(\overline{X}) \to 0$ quando $n \to \infty$		
O valor esperado da variância da amostra sobre avalia a variância da população		

6. Mostre que numa distribuição de Poisson de parâmetro λ inteiro $P(X = \lambda) = P(X = \lambda - 1)$.

[Cotação: 15]

7. Sejam os acontecimentos A, B, $C \subset \Omega$ com probabilidades não nulas e mutuamente independentes. Justifique a igualdade: $P(A - B | C) = P(A)P(\bar{B})$. [Cotação: 15]

Número:

Nome:

Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Formulário
Axiomática: P1. $P(A) \ge 0$ P2. $P(\Omega) = 1$ P3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$
$Var(X) = E(X - \mu)^{2} = E(X^{2}) - \mu^{2}; Cov(X, Y) = E\{(X - \mu_{X})(Y - \mu_{Y})\} = E(XY) - E(X)E(Y); \rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_{X}\sigma_{Y}}$
$E(aX + bY) = aE(X) + bE(Y)$; $Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X, Y)$; $E(Y) = E_{X}[E(Y X)]$;
Função geradora de momentos: $M_X(s) = E(e^{sX})$; $E(X^r) = M_X^{(r)}(0)$
$X \sim Po(\lambda) \Rightarrow f(x) = \left(e^{-\lambda}\lambda^x\right)/x ! (\lambda > 0, x = 0, 1, \cdots); X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x}\theta^x(1-\theta)^{n-x}(n > 1, x = 0, 1, \cdots, n)$
$X \sim N(0,1) \Rightarrow X^2 \sim \chi_1^2; \overline{X} = \frac{\sum_{i=1}^n X_i}{n} \; ; \; S^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n} = \frac{\sum_{i=1}^n X_i^2}{n} - \overline{X}^2 \; ; (n-1)S^2 = n \; S^2$
$X \sim \chi^2_{(n)}$ então $E(X) = n$; $Var(X) = 2n$; $M_X(s) = (1 - 2s)^{-n/2}$, $s < \frac{1}{2}$; $(nS^2)/\sigma^2 \sim \chi^2_{(n-1)}$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale -2,5. A classificação desta questão variará entre um mínimo de zero e um máximo de 10]

1 Considere A_1, A_2, A_3 acontecimentos do espaço de resultados Ω , incompatíveis 2 a 2, com probabilidade positiva. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	V	F
Se $A_1 \cup A_2 \cup A_3 = \Omega$, então A_1, A_2, A_3 formam uma partição de Ω		
A_1,A_2,A_3 são acontecimentos mutuamente independentes		
$P(A_1 - A_2) = P(A_1)$		
Se A_1, A_2, A_3 formam uma partição de Ω , então $P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$		

2. Seja X uma variável aleatória com função de distribuição F(x). Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	V	F
Sejam $a < b < c$ números reais e $P(X < c) > 0$. Tem-se $P(X < a X < c) < P(X < b X < c)$.		
Se X é uma variável aleatória mista, não existem pontos de descontinuidade de $F(x)$.		
Sejam X uma variável aleatória contínua e $G(y)$ a função distribuição de $Y=-X$.		
Então $G(y) = 1 - F(-y)$		
Se X for discreta $\forall x \in \mathbb{R}, F(x-0) - F(x) = 0.$		

3. Seja f(x, y) a função densidade conjunta de uma variável aleatória bidimensional (X,Y). Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	V	F
Suponha que a distribuição de uma variável aleatória contínua X é assimétrica positiva e seja μ_e a respectiva mediana. Então $P(X>\mu_e)=0.5$.		
$Se\ Cov(X,Y)=0$, então X e Y são independentes		
Se X é uma variável aleatória com $E(X) = \mu; Var(X) = \sigma^2$ e $Y = 2X/\sigma^2$, então $Var(Y) = 4$		
$F_X(a) = \int_{-\infty}^{a} \int_{-\infty}^{+\infty} f(x, y) dy dx$		

V	F	
Se $X \sim U(a, a+1) \ \forall \ a \in \mathbb{R}$ então a probabilidade de qualquer sub-intervalo nele contido é igual ao seu comprimento		
Se X_i $(i=1,\cdots,n)$ forem independentes com distribuição $N(\mu,\sigma^2)$, então $\sum_{i=1}^n ((X_i-\mu)/\sigma)^2 \sim \chi^2_{(2n)}$		
Considere um processo de Poisson com taxa média 5 por unidade de tempo. Seja Y a variável aleatória que representa o número de ocorrências em certo intervalo . Então $P(2 < Y < 3) = 0$		
Se $X_i \sim B(1, \theta)$ $(i = 1, \dots, n) \Rightarrow n\bar{X} \sim B(n, \theta)$		

5. Seja (X_1, X_2, \dots, X_n) uma amostra casual simples retirada de um universo X. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	F	
(X_1, X_2, \cdots, X_n) é uma estatística		
A variância da média da amostra é igual à variância da população		
$Cov(X_i, X_j) = 0 \ (i \neq j)$		
Se $X \sim N(\mu, \sigma^2)$, então $\sum_{i=1}^n [(X_i - \bar{X})/\sigma]^2 \sim \chi^2_{(n-1)}$		

6. Mostre que numa distribuição de Poisson de parâmetro λ inteiro $P(X = \lambda) = P(X = \lambda - 1)$.

[Cotação: 15]

7. Sejam os acontecimentos A, B, $C \subset \Omega$ com probabilidades não nulas e mutuamente independentes. Justifique a igualdade: $P(A - B|C) = P(A)P(\bar{B})$. [Cotação: 15]

Número:

Nome:

Cotação da 1º Parte: 8 Valores. As respostas são efectuadas no espaço a seguir disponível. A cotação das perguntas de Verdadeiro e Falso é feita sempre da mesma maneira. No decorrer da prova não serão prestados quaisquer esclarecimentos. Não pode utilizar calculadora nem qualquer meio de consulta. BOA SORTE!

Formulário
Axiomática: P1. $P(A) \ge 0$ P2. $P(\Omega) = 1$ P3. Se $A \cap B = \emptyset$ então $P(A \cup B) = P(A) + P(B)$
$Var(X) = E(X - \mu)^{2} = E(X^{2}) - \mu^{2}; Cov(X, Y) = E\{(X - \mu_{X})(Y - \mu_{Y})\} = E(XY) - E(X)E(Y); \rho_{X,Y} = \frac{Cov(X, Y)}{\sigma_{X}\sigma_{Y}}$
$E(aX + bY) = aE(X) + bE(Y)$; $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab Cov(X, Y)$; $E(Y) = E_X [E(Y \mid X)]$;
Função geradora de momentos: $M_X(s) = E(e^{sX})$; $E(X^r) = M_X^{(r)}(0)$
$X \sim Po(\lambda) \Rightarrow f(x) = \left(e^{-\lambda}\lambda^{x}\right)/x ! (\lambda > 0, x = 0, 1, \cdots); X \sim B(n, \theta) \Rightarrow f(x) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - x} (n > 1, x = 0, 1, \cdots, n)$
$X \sim N(0,1) \Rightarrow X^{2} \sim \chi_{1}^{2}; \overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} ; S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n} = \frac{\sum_{i=1}^{n} X_{i}^{2}}{n} - \overline{X}^{2} ; (n-1)S^{2} = n S^{2}$
$X \sim \chi^2_{(n)}$ então $E(X) = n$; $Var(X) = 2n$; $M_X(s) = (1 - 2s)^{-n/2}$, $s < \frac{1}{2}$; $(nS^2)/\sigma^2 \sim \chi^2_{(n-1)}$

[Atenção: Cada resposta certa vale 2,5 cada resposta errada vale –2,5. A classificação desta questão variará entre um mínimo de zero e um máximo de 10]

1 Considere uma partição $\{A_1,A_2,A_3\}$ do espaço de resultados Ω e sejam B e C acontecimentos de Ω com probabilidade positiva. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

respectiva.	V	Г
$P(B-C) \le P(B).$		
Nestas condições tem-se sempre $P[A_1 A_2 \cup A_3] = 0$		
Os acontecimentos A_1, A_2, A_3 são mutuamente independentes.		
Os acontecimentos $A_i \ (i=1,2,3)$ são acontecimentos incompatíveis.		

2. Seja X uma variável aleatória discreta com função de distribuição F(x) e D_X o respectivo conjunto de pontos de descontinuidade Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	<u> </u>	<u> </u>
Se $a, b \in D_X$, $a < b$, $\Rightarrow P(a \le X < b) = F(b-0) - F(a)$.		
Se φ é uma função real de variável real, $Y=\varphi(X)$ pode não ser uma variável aleatória discreta.		
$\forall a \in D_X \ F(a+0) = F(a).$		
$E(X)$ pode assumir valores que não pertençam ao conjunto D_X		

3. Seja (X,Y) uma variável aleatória bidimensional com função probabilidade conjunta f(x,y).Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

	V	<u> </u>
Se X é uma variável aleatória com $E(X)=\mu; Var(X)=\sigma^2$ e $Y=(X-\mu)^2/\sigma^2$, então $E(Y)=1$.		
A $Cov(X,Y)$ pode ser nula mesmo que X e Y não sejam independentes		
Se $D_X = \{1, \dots, 5\}, D_Y = \{0, 1, 2\}$ a $P(Y < 2) = \sum_{y=0}^{2} \sum_{x=1}^{5} f(x, y)$		
Suponha que a distribuição de uma variável aleatória contínua X é simétrica e seja μ_e a respectiva mediana. Então $P(X>\mu_e)<0.5$.		

v

V	F	
Se $X \sim Ex(\lambda) \Rightarrow Y = F(X) \sim U(0,1)$.		
Seja $X_i \sim N(0,1)$ $(i=1,\cdots,n)$ independentes, então $\sum_{i=1}^n X_i^2 \sim \chi^2_{(n)}$.		
Considere um processo de Poisson com taxa média λ por unidade de tempo. Seja Y a variável aleatória que representa o tempo de espera pela n-ésima ocorrência. Então $E(Y)=n/\lambda$.		
Se $X_i \sim B(1,\theta)$ $(i=1,\cdots,n)$ independentes então $\sum_{i=1}^n X_i \sim B(n,n\theta)$.		

5. Seja $(X_1, X_2, \cdots, X_n), n > 2$, uma amostra casual simples retirada de um universo X com média e variância desconhecidas. Indique as respostas verdadeiras (**V**) ou falsas (**F**), assinalando com **X** na quadrícula respectiva:

V	F	
O valor esperado da variância da amostra sub-avalia a variância da população.		
nS^2/σ^2 é uma estatística.		
Se $X{\sim}t_{(m)}$ então X tende assintoticamente para $N(0,1)$ quando $m o \infty$		
$P(X_1 > x, X_2 > x, \dots, X_n > x) = [1 - F(x)]^n.$		

6. Mostre que numa distribuição de Poisson de parâmetro λ inteiro $P(X = \lambda) = P(X = \lambda - 1)$.

[Cotação: 15]

7. Sejam os acontecimentos $A, B, C \subset \Omega$ com probabilidades não nulas e mutuamente independentes. Justifique a igualdade: $P(A - B | C) = P(A)P(\overline{B})$. [Cotação: 15]

ESTATÍSTICA I - 2º Ano/Economia-Finanças – Exame Época Recurso - 2ª Parte – Prática – 80 minutos

28. 06. 11

0,7361

0,1937

0,9298

Nome:				Número:
Espaço re	eservado para classi	ficações		
1a.(20)	2a.(20)	3a.(10)	4a.(10)	T:
1b.(10)	2b.(10)	3b.(20)	4b.(20)	P:
(No	ta: Nas questões de	resposta múlti	pla, uma respos	ta errada será penalizada com -2,5)
médio exper	os e grandes, resp iência de anos ant sões são de 1%, 1	ectivamente n eriores, sabe-	as seguintes pr se que as proba	s, divididos em 3 categorias: pequenos, roporções: 0.5, 0.4, 0.1. Com base na abilidades de declarações com erros e para contribuintes pequenos, médios e
	na das declarações ssificado como méd		s. Qual a probal	bilidade de que seja de um contribuinte
an		ões. Calcule a		mente dez contribuintes médios para de duas declarações de contribuintes

0,3874

2.	Sejam as variáveis X e Y	com função densidad	le conjunta:	
		$f(x,y) = 9x^2y^2 0 <$	x < 1 0 < y < 1	
a)	Verifique que $f_X(x) = 3x$	2 , $0 < x < 1$ e estude	a independência das v	ariáveia aleatórias X e Y.
b)	Considere a variável alea	atória $W = 2X - 2$. Ca	slcule a $P(W < -1)$.	
	1 🗆	1 🗖	1 🔲	27
	$\frac{1}{8}$	$\frac{1}{16}$	· 🗀	$\frac{27}{64}$
3. A	resistência à fractura de	um novo tipo de mate	erial de soldadura é un	na variável aleatória com

a) Determine um limite máximo de resistência à fractura que se verifique em 80% dos casos.

b) Tendo sido seleccionada uma amostra casual de dimensão 9 desse material, qual a probabilidade de que a média da resistência dos elementos da amostra difira da média da

11.05

10.51

11.68

distribuição normal de média 10 e variância 4.

12.56

população por valores inferiores a 0,1?

4. Um professor corrige exames ininterruptamente. A correcção de exames segue um processo de Poisson com taxa média de 5 por hora.								
a) Qual a probabilidade de decorrerem mais de 15 minutos entre a correcção de duas provas consecutivas?								
	0.2865	0.7135		0.6446		0.8685		
b) Seleccionada uma amostra de tempos de correcção de 5 provas, qual a probabilidade de a prova corrigida em menos tempo ter sido corrigida em menos de 12 minutos.								

ESTATÍSTICA I - 2º Ano/Economia-Finanças – Exame Época Recurso - 2ª Parte – Prática – 80 minutos

28. 06. 11

Nome:					Número:	_
Espaço rese	rvado para class	ificações				
1a.(20)	2a.(20)	3a.(10)	4a.(10)		Т:	
1b.(10)	2b.(10)	3b.(20)	4b.(20)	F	o.	
(Nota:	Nas questões d	e resposta múlti	pla, uma respos	sta errada será po	enalizada com -2,5)	
médios e experiência	grandes, respe a de anos ante	ctivamente na riores, sabe-se	s seguintes pre e que as proba	oporções: 0.5, dabilidades de de	3 categorias: pequenc 0.4, 0.1. Com base le eclarações com erros es pequenos, médios	na e
	das declaraçõe ficado como mé		s. Qual a proba	ibilidade de que	seja de um contribuin	te
anális		ões. Calcule a			tribuintes grandes pa rações de contribuint	
0,9984	4 🔲	0,0112	0,0	0881	0,9672	

2.	Sejam as variáveis X e Y com função densidade conjunta:							
	$f(x,y) = 9x^2y^2 0 < x < 1 0 < y < 1$							
a)	Verifique que $f_X(x) = 3x^2$, $0 < x < 1$ e estude a independência das variáveis aleatórias X e Y.							
b)	Considere a variável aleatória $W = X + 3$. Calcule a $P(W < 3.25)$.							
0	0.0156 0.0640							
	resistência à fractura de um novo tipo de material de soldadura é uma variável aleatória com tribuição normal de média 10 e variância 4.							
a) D	etermine um limite máximo de resistência à fractura que se verifique em 70% dos casos.							
	12.56							
prob	b) Tendo sido seleccionada uma amostra casual de dimensão 9 desse material, qual a probabilidade de que a média da resistência dos elementos da amostra difira da média da população por valores inferiores a 0,1?							

	4. Um professor corrige exames ininterruptamente. A correcção de exames segue um processo de Poisson com taxa média de 5 por hora.							
a) Qual a probabilidade de decorrerem mais de 30 minutos entre a correcção de duas provas consecutivas?								
	0.6767	0.4601	0.1353		0.8647			
 b) Seleccionada uma amostra de tempos de correcção de 5 provas, qual a probabilidade de a prova corrigida em menos tempo ter sido corrigida em menos de 12 minutos. . 								

2ª Parte - Prática - 80 minutos

Nome:_					Número:
Espaço	reservado para class	ificações			
1a.(20	2a.(20)	3a.(10)	4a.(10)	T:	
1b.(10	2b.(10)	3b.(20)	4b.(20)	P:	
(N	ota: Nas questões de	e resposta múlti	pla, uma respost	a errada será pena	lizada com -2,5)
médi expe	os e grandes, resp riência de anos ant sões são de 1%, 1	ectivamente na eriores, sabe-s	as seguintes pro e que as proba	pporções: 0.5, 0.4 bilidades de decla	ategorias: pequenos, , 0.1. Com base na arações com erros e pequenos, médios e
	ma das declarações assificado como méd		. Qual a probab	ilidade de que sej	a de um contribuinte
-		ções. Calcule	a probabilidade		buintes médios para ões de contribuintes
(0,1488	0,9950	0,0	0331	0,9619

2. Sejam as variáveis X e Y com função densidade conjunta:
$f(x,y) = 9x^2y^2 0 < x < 1 0 < y < 1$
a) Verifique que $f_X(x) = 3x^2$, $0 < x < 1$ e estude a independência das variáveis aleatórias X e Y.
b) Considere a variável aleatória $W = 2X + 2$. Calcule a $P(W < 3.5)$.
0.1250
 A resistência à fractura de um novo tipo de material de soldadura é uma variável aleatória com distribuição normal de média 10 e variância 4.
a) Determine um limite máximo de resistência à fractura que se verifique em 90% dos casos.
12.56
b) Tendo sido seleccionada uma amostra casual de dimensão 9 desse material, qual a probabilidade de que a média da resistência dos elementos da amostra difira da média da população por valores inferiores a 0,1?

•	rofessor corrige exame ı com taxa média de 5	s ininterruptamente. A co por hora.	rrecção de	exames segue u	ım processo	de			
a) Qual a probabilidade de decorrerem mais de 6 minutos entre a correcção de duas provas consecutivas?									
	0.9856	0.6065	0.9098		0.3935				
	b) Seleccionada uma amostra de tempos de correcção de 5 provas, qual a probabilidade de a prova corrigida em menos tempo ter sido corrigida em menos de 12 minutos.								

ESTATÍSTICA I - 2º Ano/Economia-Finanças – Exame Época Recurso - 2ª Parte – Prática – 80 minutos

28. 06. 11

0,9830

0,0146

Nom –	e:					Número:	
Espa	aço reservad	lo para classif	icações				
16	a.(20)	2ª.(20)	3ª.(10)	4 ^a .(10)		T:	
11	o.(10)	2b.(10)	3b.(20)	4b.(20)		P:	
	(Nota: Nas	questões de i	resposta múlti	pla, uma resp	osta errada será	penalizada com -2	2,5)
e: o:	nédios e gra xperiência d	andes, resped de anos antei	ctivamente na riores, sabe-s	s seguintes e que as pro	proporções: 0.5 obabilidades de	n 3 categorias: pe 5, 0.4, 0.1. Com declarações com ntes pequenos, n	base na erros e
a)		declarações c o como médio		Qual a prob	pabilidade de qu	e seja de um cor	ntribuinte
b)	análise da		s. Calcule a			ontribuintes granc larações de cont	

0,9987

0,0819

2. Sejam as variáveis X e	Y com fur	nção densida	nde conjunta				
	f(x,y)	$=9x^2y^2$	0 < x < 1	0 < y <	< 1		
a) Verifique que $f_X(x) =$	$3x^2$, 0 <	x < 1 e estu	ıde a indepe	ndência das	variáveis	aleatórias X	e Y.
b) Considere a variável	aleatória	W=X-3.	Calcule a P	(W<-2.6).			
0.1250	0.4219		0.0156		0.0640		
 A resistência à fractura distribuição normal de m 			material de	soldadura é	uma variá	avel aleatória	a com
a) Determine um limite r	náximo de	e resistência	à fractura qu	ıe se verifiqu	ue em 60%	dos casos.	
12.56	1	1.68 🗌		11.05		10.51	
 b) Tendo sido selecciono probabilidade de qui população por valor 	e a média	da resistênd				•	la

•	orofessor corrige examen com taxa média de 5		•	recção de	exames segue ι	ım processo	de	
a) Qu consec	al a probabilidade de d utivas?	ecorrerem	n mais de 9 minu	tos entre a	correcção de du	ias provas		
	0.8266	0.5276		0.9595		0.4724		
b) Seleccionada uma amostra de tempos de correcção de 5 provas, qual a probabilidade de a prova corrigida em menos tempo ter sido corrigida em menos de 12 minutos.								